SHORT COMMUNICATIONS

Acta Cryst. (1997). B53, 317-322

The perils of $C c$ revisited

RICHARD E. MARSH at Department of Chemistry and The Beckman Institute, California Institute of Technology, Pasadena, CA 91125,USA. E-mail: rem@xray.caltech.edu
(Received 25 June 1996; accepted 6 November 1996)

Abstract

The space groups of 98 structures originally reported in $C c$ are revised. In 75 cases the revised space group is $C 2 / c$ and the revision entails adding a center of symmetry, usually leading to large changes in bond lengths and angles. In the remaining 23 cases, where the revised space group is $F d d 2, R 3 c$ or (in one case) $I \overline{4} c 2$, the lattice type is changed but no center is added; in these cases the molecular dimensions are effectively unchanged.

1. Introduction

About 5 years ago, Baur \& Kassner (1992) compiled a list of 221 structures that had originally been described in space groups of unnecessarily low symmetry. They noted that space group $C c$ had a disproportionately large representation in the list and selected, as the running title of their compilation, 'The Perils of $C c$ '; they concluded that 'possibly over 10% of all crystal structures reported in $C c$ should actually be described in a higher true symmetry'. I have now carried out a survey of the October 1995 release of the Cambridge Structural Database (1992; CSD), noting all structures reported in space group number 9 (for which the standard setting is $C c$, but other settings such as $B b$ and $I a$ are also included). Of the approximately 1200 valid entries, I have identified 116 which, almost surely, should be described in higher symmetries (18 of these entries have previously been noted) - very close to the 10\% figure predicted by Baur \& Kassner (1992). The 98 new (as far as I am aware) examples of structures that have been mis-identified as belonging to $C c$ are listed in Table 1.

2. Experimental

Unit-cell dimensions and atom coordinates were recovered from the CSD and scrutinized for possible higher symmetry. This scrutiny was carried out by personal inspection rather than via a computer program such as MISSYM (Le Page, 1988) since, in several cases, matching of related atoms was obscured by disorder, by atoms (usually hydrogen) being missing, by methyl groups of related molecules having been assigned different conformations or by an occasional misprint. Coordinates of the symmetry-related (in the revised space group) atoms were then averaged and the fit to the higher symmetry was evaluated. In almost all cases the original publication was also examined and evaluated. From these evaluations I became convinced that the 98 entries in Table 1 should properly be re-formulated in the space groups noted.* In a majority of cases the revised space

[^0]group is $C 2 / c$. (I have always cast it in this standard setting, no matter what setting of space group number 9 was originally specified.) Thus, a center of symmetry has been added and one must fear that the original $C c$ refinement suffered from the severe near-singularity problems that exist whenever an approximately centrosymmetric structure is described in a noncentrosymmetric space group (Ermer \& Dunitz, 1970; Schomaker \& Marsh, 1979). This seems to have been almost invariably the case, the matching of symmetry-related coordinates being far worse than one might expect from any reasonable e.s.d.'s. As a result, in compounds containing phenyl rings, for example, it was a typical situation that $\mathrm{C}-\mathrm{C}$ distances in the $C c$ description varied from, perhaps, 1.25 to $1.55 \AA$. (These peculiar distances were seldom mentioned in the original papers.) In the revised $C 2 / c$ structures, the distances were normal with only one exception (CHXARH; Table 1). In many cases the original authors noted difficulties in refinement, often being forced to constrain the bond lengths and angles to reasonable values.

Of the 98 entries in Table 1, 79 represent cases in which the C -centered monoclinic unit cell has $Z=4$, i.e. where the asymmetric unit for the original $C c$ description contains a single formula unit (typically a discrete molecule). Accordingly, describing these structures in $C 2 / c$ - as occurs in 65 of the 79 cases - requires that the molecules contain an internal symmetry element, either a C_{2} axis or a center of inversion; almost invariably it is a C_{2} axis. In the other 14 cases with $Z=4$ the change in space group is to either $F d d 2$ or $R 3 c$; in $F d d 2$ the molecule must again possess a C_{2} axis and in $R 3 c$ a C_{3} axis. Of the 19 examples with $Z>4$, molecular symmetry is required in only three cases - CTPIRA, where two independent molecules lie on C_{3} axes, JISKEB, where the molecule lies on a C_{2} axis, and BIHHEF, where one of the three independent malonic acid molecules lies on a C_{2} axis.

3. Discussion

I believe there are three reasons why $C c$ might be a special candidate for incorrect space-group assignment. First, any structure reported in $C c$ must be achiral and the addition of a center of symmetry (so as to create $C 2 / c$) does not affect the chirality of the system. In some other cases where the choice between a noncentrosymmetric and a centrosymmetric space group is not dictated by systematic absences - such as the pairs $P 1$ and $P \overline{1}, P 2_{1}$ and $P 2_{1} / m$, and $C 2$ and $C 2 / m$ - adding a center of symmetry would remove the chirality and perhaps make the correct choice obvious. Second, the centrosymmetric space group $C 2 / c$ can be generated from $C c$ by adding a C_{2} axis, a more common (and, perhaps, less easily recognized) symmetry element than the mirror plane that is necessary to take, for

Table 1. Structures originally described in space group Cc which are better described in higher symmetries
Included are the 'reference codes' assigned by the Cambridge Structural Database (1992), the revised space group, the number of formula units per cell (Z) and the formula unit.

Refcode	Space group	Z	Formula unit
AMESNC	C2/c	4	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Sn}$
BIHHEF	C2/c	20	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{KF}$
BORGUK	C2/c	4	$\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{10} \mathrm{O}_{8} \mathrm{Co}_{2} .2 \mathrm{H}_{2} \mathrm{O}$
BRMENP10	C2/c	4	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{Br}_{4}$
BUVYIA	Fdd 2	16	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}_{3} \mathrm{~S} . \mathrm{H}_{2} \mathrm{O}$
CAGROR	Fdd 2	8	$\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O} 2 \mathrm{Ni} .2 \mathrm{PF}_{6}$
CASWOI10	C2/c	4	$\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{P}_{2} \mathrm{~F}_{6} \mathrm{Rh}$
CHXARH	C2/c	4	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Cl} \mathrm{l}_{2} \mathrm{Rh} .2 \mathrm{H}_{2} \mathrm{O}$
CIVLIC10	Fdd 2	16	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{6}$
CLTPOC	Fdd2	8	$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Co}$
CPOECU10	C2/c	8	$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NOCl}_{3} \mathrm{CuP}$
CTPIRA	R3c	12	$\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{Cl}_{3} \mathrm{P}_{3} \mathrm{Ir}$
CUACPY	C2/c	4	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cu} . \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
CUWSES	C2/c	4	$\mathrm{C}_{34} \mathrm{H}_{20} \mathrm{O}_{11} \mathrm{P}_{2} \mathrm{Cr}_{2}$
DAWDIO	C2/c	4	$\mathrm{C}_{32} \mathrm{H}_{72} \mathrm{Si}_{4}$
DAWWED	C2/c	4	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}_{5} \mathrm{Sn} .2\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right.$)
DAWWIH	C2/c	4	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}_{5} \mathrm{Sn} .2\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)$
DELWEW	Fdd 2	8	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2}$
DERKOA10	C2/c	4	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~S}_{10} \mathrm{Mo}_{2} \mathrm{Fe} .3\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)$
DESZUW	R3c	6	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{PSe}$
DIKWAV	C2/c	4	$\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Pd}_{2}$
DIOXGC	C2/c	4	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Ge}$
DIRVEF	C2/c	4	$\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~S}_{6} \mathrm{Cr}_{4} \mathrm{Mn}$
DIRVIJ	C2/c	4	$\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~S}_{6} \mathrm{Cr}_{4} \mathrm{Fe}$
DISKEV	C2/c	4	$\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{7}$
DOHVOL	C2/c	4	$\mathrm{C}_{40} \mathrm{H}_{88} \mathrm{Si}_{4}$
DOTJF	C2/c	4	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Cl}_{4} \mathrm{Sb}$
DUNPEH	C2/c	4	$\mathrm{C}_{40} \mathrm{H}_{74} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Rh}_{6}$
DUYGAF	R3c	6	$\mathrm{C}_{21} \mathrm{H}_{15}$. $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{Br}_{3} \mathrm{Ni}_{2}$
FAWBAG	C2/c	4	$\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Cu}$
FIXWIS	Fdd2	8	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$
FUZYII	C2/c	4	$\mathrm{C}_{19} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}_{19} \mathrm{Cu}_{6} \mathrm{Mo}_{6}$
GEGXEV	C2/c	8	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5}$
GEJMAJ	C2/c	4	$\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{14} \mathrm{~V}_{2} . \mathrm{C}_{7} \mathrm{H}_{8}$
HAGTIS	C2/c	4	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{14} \mathrm{BCs}$
HALJUZ	C2/c	4	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2}$
НАХЛZ	C2/c	4	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Co} .2 \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
INOLPT	C2/c	8	$\mathrm{C}_{54} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pt}$
JABJOL	C2/c	4	$\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Co}$
JAHRAL	C2/c	4	$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{8} \mathrm{Ag} . \mathrm{NO}_{3}$
JANNOB	C2/c	4	$\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{ClRh}$
JEGGIL	C2/c	4	$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Si}_{2}$
JEVTOT	C2/c	4	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Cu}_{2} .2 \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
JISKEB		8	$\mathrm{C}_{9} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Sn}_{3} \mathrm{I}$
JOGVUW	Fdd 2	16	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O} 9 \mathrm{~V} \cdot \mathrm{NH}_{4} \cdot 2 \cdot 5 \mathrm{H}_{2} \mathrm{O}$
JOHBUD	C2/c	4	$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}$
JUXFUD	C2/c	4	$\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Sr}$
KAXYOX	C2/c	4	$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NS}_{2} \mathrm{~F}_{6} \mathrm{Cu}$
KEPGIV	Fdd2	8	$\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{14} \mathrm{Na}_{2} \mathrm{I}_{2}$
KEVWUD	R3c	6	$\mathrm{C}_{24} \mathrm{H}_{67} \mathrm{~N}_{16} \mathrm{Si}_{4} .3 \mathrm{~N}_{3}$
KEYKUU	C2/c		$\mathrm{C}_{44} \mathrm{H}_{37} \mathrm{OP}_{2} \mathrm{ClRu}$
KEZGOL	C2/c	8	$\mathrm{C}_{44} \mathrm{H}_{80} \mathrm{Si}_{5}$
KIBZAW	C2/c	4	$\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~W}_{2} \cdot \mathrm{~S}_{2} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
KIDTIA	C2/c	4	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{12} \mathrm{Rh}_{6}$
KIFKIT	C2/c	8	$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{9} \mathrm{~S}_{3} \mathrm{Y}$
KIFKOZ	C2/c	8	$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{9} \mathrm{~S}_{3} \mathrm{Eu}$
Kimsud	Fdd 2	8	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2}$
KIXCAV	C2/c	4	$\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ag}$
KIYPIR	C2/c	4	$\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~F}_{12} \mathrm{~S}_{2} \mathrm{Pt}$
KIZKIN	Fdd 2	8	$\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{ClSi}_{2} \mathrm{Ti}_{2} \mathrm{As}$

Reference	Note
Harrison, King \& Healy (1979)	
Emsley, Jones \& Kuroda (1982)	
Robinson, Flohr, Kempe, Pannhorst \& Rétey (1983)	(a)
Oku, Harada, Yagi \& Shirahase (1983)	
Fletton, Humber, Roberts, Owston \& Henrick (1983)	
Morrison, Thompson \& Trotter (1983)	
Dobson, Moore, Robinson, Galas \& Hursthouse (1985)	(b)
Filippova, Polynova, Il'inskii, Porai-Koshits \& Ezerskaya (1981)	(c)
Irngartinger, Reimann, Garner \& Dowd (1988)	
Mangion, Smith \& Shore (1976)	
Newton, Caughman \& Taylor (1974)	(d)
Robertson \& Tucker (1981)	
Anzenhofer \& ten Rouwelaar (1967)	(e)
Zeiher, Mohyla, Lorenz \& Hiller (1985)	
Matsumoto, Takatsuna, Minemura, Nagai \& Goto (1985)	
Paseshnitchenko, Aslanov, Jatsenko \& Medvedev (1985)	(f)
Paseshnitchenko et al. (1985)	(g)
Neidlein, Degener, Gieren, Weber \& Hubner (1985)	
Zhigui, Chunxiao, Yuguo \& Fengshan (1986)	(h)
Allen, Nowell \& Taylor (1985)	
Yamamoto \& Yamazaki (1985)	
Kulishov et al. (1970)	
Pasynskii, Eremenko, Gasanov, Struchkov \& Shklover (1984)	
Pasynskii et al. (1984)	
Dvorkin et al. (1985)	(i)
Matsumoto, Minemura, Takatsuna, Nagai \& Goto (1985)	
Gérard, Lucken \& Bernardinelli (1986)	
Arif, Heaton \& Jones (1986)	
Cecconi, Ghilardi, Midollini, Moneti \& Orlandini (1986)	
Ishida, Hatta, Yamashita, Doi \& Inoue (1986)	(j)
Cosmo, Hambley \& Sternhell (1987)	
Xintao, Bing, Yifan \& Jiaxi (1988)	(k)
Schultz, Macielag, Podhorez, Suhadolnik \& Kullnig (1988)	
Lee, Nakanishi, Chiang, Frankel \& Spartalian (1988)	(l)
Zviedre, Fundamensky \& Schwartz (1992)	
de Ridder, Schenk \& Döpp	m)
Carballo \& Castiñeiras (1983)	
Hunt, Kemmitt, Russell \& Tucker (1979)	
Colborn, Garbauskas \& Hejna (1988)	
Nasielski, Nasielski-Hinkens, Heliporn, Rypens \& Declercq (1988)	
Cooper et al. (1989)	(n)
de Ruiter, Benson, Jacobson \& Verkade (1990)	
Qin et al. (1989)	
Perevalova et al. (1990)	
Shimoi, Saito \& Ogino (1991)	(d)
Wade, Kondracki \& Carroll (1991)	
Mösges, Hampel, Kaupp \& von Ragué Schleyer (1992)	
Willert-Porada, Burton \& Baenziger (1989)	
Lu et al. (1990)	
Woning, Daniels \& Verkade (1990)	
Rickard, Roper, Taylor, Waters \& Wright (1990)	(o)
Kabe et al. (1990)	
Schreiber, Wieghardt, Nuber \& Weiss (1990)	
Hou, Wakatsuki \& Yamazaki (1990)	
Bombieri et al. (1989)	
Bombieri et al. (1989)	
Zyss, Ledoux, Bertauit \& Toupet (1991)	
Lan-Sung, Hua-Hui \& Qian-Er (1991)	(p)
Debaerdemaeker, Roth \& Brune (1991)	
Fenske, Grissinger, Hey-Hawkins \& Magull (1991)	

Table 1 (cont.)

Refcode	Space group	Z	Formula unit
KOWDAB	C2/c	4	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Ni} .2\left(\mathrm{ClO}_{4}\right)$
KUBRAA	C2/c	4	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}$
LELYEG	C2/c	4	$\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{ClHg} .2\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~S}_{8}\right)$
LEWZAO	C2/c	4	$\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Ni}$
LEZTAL	C2/c	8	$\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{OPSi}_{2} \mathrm{Ru}$
NONPIN	C2/c	4	$\mathrm{C}_{18} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{P}$
NPHLCU	$C 2 / \mathrm{c}$	4	$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Cu} . \mathrm{C}_{4} \mathrm{HO}_{4} \mathrm{Cl}_{6}$
OCYAXM	C2/c	8	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{4}$
OFAFSB10	C2/c	4	$\mathrm{C}_{4} \mathrm{~F}_{12} \mathrm{O}_{5} \mathrm{Sb}_{2}$
OXIBZN10	C2/c	4	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{I}_{2}$
PAKKER	C2/c	4	$\mathrm{C}_{52} \mathrm{H}_{44} \mathrm{OFP}_{4} \mathrm{Mo} . \mathrm{BF}_{4}$
PEKKOF	C2/c	4	$\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Yb}$
PENRAB	R3c	6	$\mathrm{C}_{15} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{Si}_{4} \mathrm{Ti}$
PENREF	R3c	6	$\mathrm{C}_{15} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{Si}_{3} \mathrm{GeTi}$
PERDIZ	C2/c	4	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{Pt}$
PIHXAF	Fdd 2	16	$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{SIr}_{2}$
SAZPEO	$C 2 / c$	4	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Cu} . \mathrm{ClO}_{4}$
SBFOXS	C2/c	4	$\mathrm{C}_{2} \mathrm{O}_{4} \mathrm{~F}_{6} \mathrm{Na}_{2} \mathrm{Sb}_{2}$
SEMJUP	C2/c	4	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Cl}_{4}$
SEYGEI	C2/c	4	$\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{P}_{2} \mathrm{Rh}$
SIKVIR	C2/c	8	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NOBr}$
SILLUU	C2/c	4	$\mathrm{C}_{13} \mathrm{H}_{34} \mathrm{NS}_{2} \mathrm{P}_{4} \mathrm{Co} .2\left(\mathrm{BF}_{4}\right)$
SIRWIZ	$F d d 2$	8	$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2}$
SIVHIO	C2/c	4	$\mathrm{C}_{4} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Co} . \mathrm{NO}_{2}$
SOMJEJ	C2/c	4	$\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Ti}_{2}$
SOTPAS	C2/c	4	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{12} \mathrm{~S}_{4} \mathrm{Rh}_{6} . \mathrm{C}_{6} \mathrm{H}_{14}$
TARBOD	C2/c	4	$\mathrm{C}_{73} \mathrm{H}_{108} \mathrm{O}_{12}$
VAWNAI	C2/c	4	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Br}_{2}$
VETFIJ	C2/c	4	$\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{Cl}_{2} \mathrm{~S}_{2} \mathrm{Co} .3 .12\left(\mathrm{CH}_{3} \mathrm{OH}\right)$
VICZUC	Fdd2	16	$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{PS}_{4} \mathrm{NiW}$
VOGHII	C2/c	4	$\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Rh}_{2} .2\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}\right)$
VUNSAY	C2/c	4	$\mathrm{C}_{21} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{Cl}_{4} \mathrm{Al}_{4}$
WAKMEA	R3c	6	$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{6}$ As
WESDUT	Fdd2	16	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NFe}$
YACGAK	Fdd 2	16	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$
YAJZUE	C2/c	4	$\mathrm{C}_{15} \mathrm{H}_{38} \mathrm{NO}_{8} \mathrm{~S}_{2} \mathrm{P}_{4} \mathrm{Co} .2 \mathrm{BF}_{4}$
YEYNAR	C2/c	4	2($\left.\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~S}_{12}\right) . \mathrm{C}_{12} \mathrm{H}_{4} \mathrm{~N}_{4}$
YIDYAL	C2/c	4	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}$

Reference
Zhanfeng, Guoxiong, Ling, Fengshan \& Yuguo (1990)
Krakowiak et al. (1992)
Konovalikhin et al. (1992)
Walther, Schmidt, Klettke, Imhof \& Görls (1994)
Tobita, Wada, Ueno \& Ogino (1994)
Bello (1973)
van Meerssche, Germain, Declercq \& Wilputte-Steinert
(1981)
Precigoux, Busetta, Courseille, Hospital \& Miquel (1978)
Bullivant, Dove \& Haley (1980)
Alcock \& Countryman (1979)
Cotton, Eglin \& Wiesinger (1992)
Ji-Zhu, Zhong-Sheng, Wen-Qi \& Yin (1993)
Ovchinnikov et al. (1992)
Miskowski, Houlding, Che \& Wang (1993)
Jones \& Chin (1994)
Munakata, Kitagawa, Shimono \& Masuda (1989)
Escande, Tichit, Ducourant, Fourcade \& Mascherpa (1978)
Mahato et al. (1988)
Burrell, Clark., Jeffrey, Rickard \& Roper (1990)
Crisma et al. (1990)
Kita, Okuyama, Kashiwabara \& Fujita (1990)
Bond \& Scott (1991)
Bernal, Cetrullo \& Berhane (1990)
Nadasdi \& Stephan (1991)
Rossi, Kallinen, Pursiainen, Pakkanen \& Pakkanen (1991)
Millini, Del Piero \& Bracci (1992)
Quast, Röschert, Peters, Peters \& von Schnering (1989)
Gheysen, Potts, Hurrell \& Abrũna (1990)
Howard et al. (1990)
Mague (1990)
Turova, Yanovskii, Kessler, Kozlova \& Struchkov (1991)
Kamenar, Bruvo \& Butumović (1993)
Bosque, López, Sales, Solans \& Font-Bardia (1994)
Dastidar, Guru Row \& Venkatesan (1991)
Kita, Okuno, Kashiwabara \& Fujita (1992)
Aqad et al. (1994)
Takahashi, Kotora, Kasai, Suzuki \& Nakajima (1994)
Note
ornikov
(a) The coordinates reported for space group $C c$ lead to short intermolecular contacts, including a $C \cdots C$ distance of $1.84 \dot{\mathrm{~A}}$. These contacts can be removed if it is presumed that the origin in $C c$ was shifted by 0.25 in y, from its conventional location on a c-glide plane to an n-glide; the origin has been shifted back in the revised $C 2 / c$ description. Included in the $C c$ description were two additional 'unsatisfactory' atoms, presumed to be water but separated by only $2.3 \dot{\mathrm{~A}}$; these have been deleted. (b) In the original $C c$ description the $\mathrm{N}-\mathrm{O}$ distance is very short ($1.0 \dot{\mathrm{~A}}$) and both atoms appear, in an ORTE P plot (Johnson, 1965), to have large displacement parameters; the $\mathrm{Rh}-\mathrm{N}-\mathrm{O}$ angle is 130°. In the revised $C 2 / c$ structure this grouping lies on a C_{2} axis and is presumably disordered. (c) An unusual bond length remains: $\mathrm{C} 9-\mathrm{C} 9$ (across a C_{2} axis), at $1.72 \dot{\mathrm{~A}}$. (d) Some H atoms are missing or are in unsatisfactory positions. (e) The C and N atoms of the solvate pyridine group could not be distinguished and were assumed to be disordered. In space group $C 2 / c$ this group lies on a center of inversion. (f) The coordinated ethyl group was reported as disordered and has been discarded. In $C 2 / c$ it lies on a C_{2} axis. (g) Coordinates of the tert-butyl group, which is disordered, are not available. (h) In the revised $C 2 / c$ structure, one tetraethylammonium ion lies on a center of inversion and must be disordered; it has been deleted. In the original $C c$ refinement, all three tetraethylammonium ions were constrained. (i) One ether grouping is apparently disordered. (j) In the $C c$ refinement the molecule was constrained to have C_{2} symmetry (see text). (k) Coordinates of the triethylammonium ions and the dimethylformamide solvent molecule are not available. (l) In $C 2 / c$ the toluene molecule of solvation is probably disordered and has been omitted; its geometry was constrained in the earlier $C c$ refinement. (m) I have refined the structure in $C 2 / c$, based on the original structure factors (SUP 71333), to an R of 0.073 compared with 0.074 for the earlier description; see text. (n) In $C 2 / c$ the Cl and CO ligands are related by a C_{2} axis and must be disordered. (o) The CO and Cl ligands are reported as disordered and have been removed. (p) The bond lengths and angles involving the coordinated formate group cannot be reproduced from the published coordinates. (q) The BF_{4} group appears to be disordered and has been removed. (r) The original authors noted the trigonal symmetry and attempted, without success, to describe the structure in $R 3 m$ (rather than $R 3 c$). (s) The difluoromethyl group is apparently disordered; the F atoms have been removed. (t) Coordinates of the hexane solvate are not available. (u) The methanol solvate molecules are probably disordered and have been removed. (v) The coordinates of five phenyl C atoms of one molecule, and of all H atoms of the second molecules, are missing. These unpaired atoms have been deleted.
example, $P 2_{1}$ into $P 2_{1} / m$ or $P n a 2_{1}$ into Pnam. [C2/c is a very popular space group (Brock \& Dunitz, 1994).] Finally, the addition of a C_{2} or a C_{3} axis to $C c$ can lead immediately to
space group $F d d 2$ or $R 3 c$, with lattice types that perhaps are not easily recognized by standard cell-reduction routines (particularly some early versions).

In those instances in which experimental information was available in the original articles (deplorably, that was often not the case), it appears as though the most common reason for choosing $C c$ over $C 2 / c$ was the $Z=4$ situation: the asymmetric unit contained but a single formula unit and the authors failed to realize that the molecule might contain a C_{2} axis. In at least two cases $C 2 / c$ was explicitly rejected because the molecule could not have an inversion center. (In one of these cases FAWBAG - the authors noted molecular C_{2} symmetry and, indeed, constrained the molecule to lie on a C_{2} axis parallel to b, apparently without realizing that this automatically generates $C 2 / c$.) In several other instances, however, the authors recognized the space-group ambiguity and attempted refinement in $C 2 / c$ with results they considered unsatisfactory. In the case of CPOECU10 the authors report that refinement in $\mathrm{C} 2 / \mathrm{c}$ led to an R of 0.438 , compared with 0.071 for $C c$; yet the distortions from $C 2 / \mathrm{c}$ are far too small to be responsible for this large a change. (The authors noted that the structure is pseudoface-centered and it is possible that they selected an incorrect origin in their attempts to describe it in $C 2 / c$.) In other cases the R values reported for $C 2 / c$ were only slightly higher than those reported for $C c$; while the difference might be formally significant according to the ' R test' (Hamilton, 1964), it is well known that this test is not applicable in such situations. Not only must the test be carried out on weighted rather than unweighted residuals, but it cannot be considered valid unless an unbiased goodness-of-fit is close enough to 1.0 to ensure that the additional parameters are not obscuring systematic errors in the intensity data. In all these cases I believe that the unusual bond lengths and angles that resulted from refinement in $C c$ are adequate indicators that the choice of space group was inappropriate.

In a few instances, as noted in Table 1, the additional molecular symmetry required by space group $C 2 / c$ can only be realized if disorder is assumed. In all cases this disorder was either already present in the original $C c$ description or was strongly suggested by unusual bond or conformational angles or by unrealistic displacement ellipsoids. Moreover, the disorder was not unusual, involving tert-butyl or isopropyl groups, $\mathrm{BF}_{4}{ }^{-}$ ions, the interchange of Cl and $\mathrm{C}=\mathrm{O}$, or the like.

In those cases in which the increase in space-group symmetry entails a change in lattice type rather than the addition of an inversion center, the revised space group tends to be either Fdd2 or $R 3 c$, depending on whether a C_{2} or C_{3} axis is added; in one case the change is to $I \overline{4} c 2$. In these cases there are no significant changes in the interatomic distances, as expected (Schomaker \& Marsh, 1979); the symmetrizing of the coordinates of related atoms required no shift of over $0.01 \AA$ or so. Thus, there can be no doubt that the change to higher symmetry is appropriate. However, when an inversion center is added and the space group becomes $C 2 / c$ (there are no cases in Table 1 where both a center is added and the lattice type is changed) the symmetrizing is much less exact: coordinates of related atoms must usually be shifted by $0.1 \AA$ or more and hence the interatomic distances are changed, well beyond reasonable e.s.d.'s. So how can we be certain that the change to $C 2 / c$ is appropriate? The answer is: We cannot. In one case HALJUZ - I recovered the original intensity data and carried out successful refinement in $C 2 / c$ with entirely satisfactory results: a slightly lower R and greatly improved interatomic distances. However, to do the same with the other 74 structures is beyond my endurance (even if all the original intensity data were available, which is surely not the case). Even when better
results are obtained in $C 2 / c$, one can never be sure that there are not small deviations from centrosymmetry, for such deviations are not detectable by standard diffraction methods (e.g. Schomaker \& Marsh, 1979). What can be said is that the centrosymmetric $C 2 / c$ descriptions lead to far more reasonable descriptions of the structures and that, lacking conclusive proof to the contrary, there is no valid reason to reject the more reasonable - and simpler - centrosymmetric descriptions.

So I believe that the estimate of 10% error in the assignment of space group Cc (Baur \& Kessner, 1992) is accurate. This seems, to me, an intolerable rate of error. Perhaps the situation is improving, as cell reduction software has become more sophisticated and the access to symmetry-checking programs such as MISSYM (Le Page, 1988) is wider. However, it is still important that crystallographers remain ever alert to the many pitfalls that pocket the road to a correct structure solution and that they travel that road with thought, care and respect rather than with breakneck speed. If they do so, they may successfully avoid the perils of $C c$ - and many other potholes as well.

References

Alcock, N. W. \& Countryman, R. M. (1979). J. Chem. Soc. Dalton Trans. pp. 851-853.
Allen, D. W., Nowell, I. W. \& Taylor, B. F. (1985). J. Chem. Soc. Dalton Trans. pp. 2505-2508.
Anzenhofer, K. \& ten Rouwelaar, L. N. A. (1967). Recl. Trav: Chim. Pays-Bas, 86, 801-806.
Aqad, E., Becker, J. Y., Bernstein, J., Ellern, A., Khodorkovsky, V. \& Shapiro, L. (1994). J. Chem. Soc. Chem. Commun. pp. 2775-2776.
Arif, A. M., Heaton, D. E. \& Jones, R. A. (1986). J. Chem. Soc. Chem. Commun. pp. 1506-1507.
Baur, W. H. \& Kassner, D. (1992). Acta Cryst. B48, 356-357.
Bello, P. (1973). Gazz. Chim. Ital. 103, 537-541.
Bernal, I., Cetrullo, J. \& Berhane, S. (1990). Struct. Chem. 1, 361-366.
Bombieri, G., Benetollo, F., Polo, A., de Cola, L., Hawkins, W. T. \& Vallarino, L. M. (1989). Polyhedron, 8, 2157-2167.
Bond, D. R. \& Scott, J. L. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 4751.

Bosque, R., López, C., Sales, J., Solans, X. \& Font-Bardia, M. (1994). J. Chem. Soc. Dalton Trans. pp. 735-745.
Brock, C. P. \& Dunitz, J. D. (1994). Chem. Mater. 6, 1118-1127.
Bullivant, D. P., Dove, M. F. A. \& Haley, M. J. (1980). J. Chem. Soc. Dalton Trans. pp. 109-114.
Burrell, A. K., Clark, G. R., Jeffery, J. G., Rickard, C. E. F. \& Roper, W. R. (1990). J. Organomet. Chem. 388, 391-408.

Cambridge Structural Database (1992). Version 4.6. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England. Carballo, R. \& Castiñeiras, A. (1993). J. Cryst. Spectrosc. 23, 891-893.
Cecconi, F., Ghilardi, C. A., Midollini, S., Moneti, S. \& Orlandini, A. (1986). Angew. Chem. Int. Ed. Engl. 25, 833-834.

Colborn, R. E., Garbauskas, M. F. \& Hejna, C. I. (1988). Inorg. Chem. 27, 3661-3663.
Cooper, M. K., Duckworth, P. A., Hambley, T. W., Organ, G. J., Henrick, K., McPartlin, M. \& Parekh, A. (1989). J. Chem. Soc. Dalton Trans. pp. 1067-1073.
Cosmo, R., Hambley, T. W. \& Sternhell, S. (1987). J. Org. Chem. 52, 3119-3123.
Cotton, F. A., Eglin, J. L. \& Wiesinger, K. J. (1992). Inorg. Chim. Acta, 195, 11-23.
Crisma, M., Valle, G., Bonora, G. M., De Menego, E., Toniolo, C., Lelj, F., Barone, V. \& Fraternali, F. (1990). Biopolymers, 30, 1-11.

Dastidar, P., Guru Row, T. N. \& Venkatesan, K. (1991). J. Mater. Chem. 1, 1057-1059.
Debaerdemaeker, T., Roth, H. \& Brune, H.-A. (1991). J. Organomet. Chem. 412, 243-249.
Dobson, A., Moore, D. S., Robinson, S. D., Galas. A. M. R. \& Hursthouse, M. B. (1985). J. Chem. Soc. Dalton Trans. pp. 611-616.

Dvorkin, A. A., Simonov, Yu. A., Luk'yanenko, N. G., Kirichenko, T. I., Shcherbakov, S. V., Malinovskii, T. I. \& Bogatskii, A. V. (1985). Kristallografiya, 30, 915-918.
Emsley, J., Jones, D. J. \& Kuroda, R. (1982). J. Chem. Soc. Dalton Trans. pp. 1179-1184.
Ermer, O. \& Dunitz, J. (1970). Acta Cryst. A26, 163.
Escande, P., Tichit, D., Ducourant, B., Fourcade, R. \& Mascherpa, G. (1978). Ann. Chim. (Paris), 3, 117-124.

Fenske, D., Grissinger, A., Hey-Hawkins, E. M. \& Magull, J. (1991). Z. Anorg. Allg. Chem. 595, 57-66.
Filippova, T. V., Polynova, T. N., Il'inskii, A. L., Porai-Koshits. M. A. \& Ezerskaya, N. A. (1981). Zh. Neorg. Khim. 26, 1418-1419.
Fletton, R. A., Humber, D. C., Roberts, S. M., Owston, P. G. \& Henrick, K. (1983). J. Chem. Soc. Chem. Commun. pp. 968-970.

Gérard, C., Lucken, E. A. C. \& Bernardinelli, G. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 879-884.
Gheysen, K. A., Potts, K. T., Hurrell, H. C. \& Abrũna, H. D. (1990). Inorg. Chem. 29, 1589-1592.
Hamilton, W. C. (1964). Statistics in Physical Science, pp. 157-162. New York: The Ronald Press Company.
Harrison, P. G., King, T. J. \& Healy, M. A. (1979). J. Organomet. Chem. 182, 17-36.
Hou, Z., Wakatsuki, Y. \& Yamazaki, H. (1990). J. Organomet. Chem. 399, 103-114.
Howard, K. E., Lockemeyer, J. R., Massa, M. A., Rauchfuss, T. B., Wilson, S. R. \& Yang, X. (1990). Inorg. Chem. 29, 4385-4390.
Hunt, M. M., Kemmitt, R. D. W., Russell, D. R. \& Tucker, P. A. (1979). J. Chem. Soc. Dalton Trans. pp. 287-294.

Irngartinger, H., Reimann, W., Garner, P. \& Dowd, P. (1988). J. Org. Chem. 53, 3046-3050.
Ishida, T., Hatta, K.-I., Yamashita, S., Doi, M. \& Inoue, M. (1986). Chem. Pharm. Bull. 34, 3553-3562.
Ji-Zhu, J., Zhong-Sheng, J., Wen-Qi, C. \& Yin, Z. (1993). Jiegou Hиaxue (J. Struct. Chem.), 12, 241-244.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Jones, W. D. \& Chin, R. M. (1994). J. Am. Chem. Soc. 116, 198203.

Kabe, Y., Kawase, T., Okada, J., Yamashita, O., Goto, M. \& Masamune, S. (1990). Angew. Chem. Int. Ed. Engl. 29, 794-796.

Kamenar, B., Bruvo, M. \& Butumović, J. (1993). Z. Anorg. Allg. Chem. 619, 943-946.
Kita, M., Okuno, M., Kashiwabara, K. \& Fujita, J. (1992). Bull. Chem. Soc. Jpn, 65, 3042-3048.
Kita, M., Okuyama, A., Kashiwabara, K. \& Fujita, J. (1990). Bull. Chem. Soc. Jpn, 63, 1994-2001.
Konovalikhin, S. V., Shilov, G. V., D’yachenko, O. A., Lyubovskaya, R. N., Aldoshina, M. Z. \& Lyubovskii, R. B. (1992). Izv. Akad. Nauk. SSSR Ser. Khim. pp. 903-909.
Krakowiak, K. E., Bradshaw, J. S., Dalley, N. K., Zhu, C., Yi, G., Curtis, J. C., Li, D. \& Izatt, R. M. (1992). J. Org. Chem. 57, 3166-3173.

Kulishov, V. I., Bokii, N. G., Struchkov, Yu. T., Nefedov, O. M., Kolesnikov, S. P. \& Perl'mutter, B. L. (1970). Zh. Strukt. Khim. 11, 71-74.
Lan-Sung, Z., Hua-Hui, Y. \& Qian-Er, Z. (1991). Jiegou Hиахие (J. Struct. Chem.), 10, 97-99.
Le Page, Y. (1988). J. Appl. Cryst. 21, 983-984.
Lee, S., Nakanishi, K., Chiang, M. Y., Frankel, R. B. \& Spartalian, K. (1988). J. Chem. Soc. Chem. Commun. pp. 785-786.

Lu, T., Yoo, H. K., Zhang, H., Bott, S., Atwood, J. L., Echegoyen, L. \& Gokel, G. W. (1990). J. Org. Chem. 55, 2269-2270.
Mague, J. T. (1990). Polyhedron, 9, 2635-2640.
Mahato, S. B., Mandal, N. B., Pal, A. K., Maitra, S. K., Lehmann, C. \& Luger, P. (1988). J. Org. Chem. 53, 5554-5558.
Mangion, M. M., Smith, R. \& Shore, S. G. (1976). Cryst. Struct. Commun. 5, 493-500.
Matsumoto, H., Minemura, M., Takatsuna, K., Nagai, Y. \& Goto, M. (1985). Chem. Lett. pp. 1005-1006.

Matsumoto, H., Takatsuna, K., Minemura, M., Nagai, Y. \& Goto, M. (1985). J. Chem. Soc. Chem. Commun. pp. 1366-1368.

Meersche, M. van, Germain, G., Declercq, J. P. \& Wilputte-Steinert, L. (1981). Cryst. Struct. Commun. 10, 47-53.

Millini, R., Del Piero, G. \& Bracci, M. (1992). Acta Cryst. C48, 696699.

Miskowski, V. M., Houlding, V. H., Che, C.-M. \& Wang, Y. (1993). Inorg. Chem. 32, 2518-2524.
Morrison, R. M., Thompson, R. C. \& Trotter, J. (1983). Can. J. Chem. 61, 1651-1658.
Mösges, G., Hampel, F., Kaupp, M. \& von Ragué Schleyer, P. (1992). J. Am. Chem. Soc. 114, 10880-10889.
Munakata, M., Kitagawa, S., Shimono, H. \& Masuda, H. (1989). Inorg. Chim. Acta, 158, 217-220.
Nadasdi, T. T. \& Stephan, D. W. (1991). Can. J. Chem. 69, 167171.

Nasielski, J., Nasielski-Hinkens, R., Heliporn, S., Rypens, C. \& Declercq, J. P. (1988). Bull. Soc. Chim. Belg. 97, 983-992.
Neidlein, R., Degener, H.-J., Gieren, A., Weber, G. \& Hubner, T. (1985). Z. Naturforsch. Teil B, 40, 1532-1536.

Newton, M. G., Caughman, H. D. \& Taylor, R. C. (1974). J. Chem. Soc. Dalton Trans. pp. 1031-1037.
Oku, A., Harada, K., Yagi, T. \& Shirahase, Y. (1983). J. Am. Chem. Soc. 105, 4400-4407.
Ovchinnikov, Yu. E., Igonin, V. A., Timofeeva, T. V., Lindeman, S. V., Struchkov, Yu. T., Ustinov, M. V. \& Bravo-Zhivotovskii, D. A. (1992). Metalloorg. Khim. (Organomet. Chem., in Russian), 5, 1154 1160.

Paseshnitchenko, K. A., Aslanov, L. A., Jatsenko, A. V. \& Medvedev, S. V. (1985). J. Organomet. Chem. 287, 187-194.

Pasynskii, A. A., Eremenko, I. L., Gasanov, G. Sh., Struchkov, Yu. T. \& Shklover, V. E. (1984). J. Organomet. Chem. 276, 349-362.
Perevalova, E. G., Reshetova, M. D., Ostapchuk, P. N., Slovokhotov, Yu. L., Struchkov, Yu. T., Spiridonov, F. M., Kisin, A. V. \& Yukhno, I. G. (1990). Metalloorg. Khim. (Organomet. Chem., in Russian), 3, 100-104.
Precigoux, G., Busetta, B., Courseille, C., Hospital, M. \& Miquel, J. F. (1978). Acta Cryst. B34, 3300-3305.

Qin, L., Guo-Xiong, W., Yan, Z., Zhan-Feng, Y., Cheng, Z. \& ZhongYuan, Z. (1989). Huaxue Xuebao (Acta Chim. Sin.), 47, 1065-1070.
Quast, H., Röschert, H., Peters, E.-M., Peters, K. \& von Schnering, H. G. (1989). Liebigs Ann. Chem. pp. 503-513.

Rickard, C. E. F., Roper, W. R., Taylor, G. E., Waters, J. M. \& Wright, L. J. (1990). J. Organomet. Chem. 389, 375-388.

Ridder, D. J. A. de, Schenk, H. \& Döpp, D. (1993). Acta Cryst. C49, 1970-1971.
Robertson, G. B. \& Tucker, P. A. (1981). Acta Cryst. B37, 814-821.
Robinson, J. A., Flohr, H., Kempe, U. M., Pannhorst, W. \& Rétey, J. (1983). Liehigs Ann. Chem. pp. 181-203.

Rossi, S., Kallinen, K., Pursiainen, J., Pakkanen, T. T. \& Pakkanen, T. A. (1991). J. Organomet. Chem. 419, 219-232.

Ruiter, B. de, Benson, J. E., Jacobson, R. A. \& Verkade, J. G. (1990). Inorg. Chem. 29, 1065-1068.
Schomaker, V. \& Marsh, R. E. (1979). Acta Cryst. B35, 1933-1934.
Schreiber, P., Wieghardt, K., Nuber, B. \& Weiss, J. (1990). Z. Anorg. Allg. Chem. 587, 174-192.
Schultz, A. G., Macielag, M., Podhorez, D. E., Suhadolnik, J. C. \& Kullnig, R. K. (1988). J. Org. Chem. 53, 2456-2464.
Shimoi, M., Saito, Y. \& Ogino, H. (1991). Bull. Chem. Soc. Jpn, 64, 2629-2634.
Takahashi, T., Kotora, M., Kasai, K., Suzuki, N. \& Nakajima, K. (1994). Organometallics, 13, 4183-4185.

Tobita, H., Wada, H., Ueno, K. \& Ogino, H. (1994). Organometallics, 2545-2547.
Turova, N. Ya., Yanovskii, A. 1., Kessler, V. G., Kozlova, N. I. \& Struchkov, Yu. T. (1991). Zh. Neorg. Khim. 36, 2497-2502.
Wade, P. A., Kondracki, P. A. \& Carroll, P. J. (1991). J. Am. Chem. Soc. 113, 8807-8811.
Walther, D., Schmidt, A., Klettke, T., Imhof, W. \& Görls, H. (1994). Angew. Chem. Int. Ed. Engl. 33, 1373-1376.
Willert-Porada, M. A., Burton, D. J. \& Baenziger, N. C. (1989). J. Chem. Soc. Chem. Commun. pp. 1633-1634.

Woning, J., Daniels, L. M. \& Verkade, J. G. (1990). J. Am. Chem. Soc. 112, 4601-4602.
Xintao, W., Bing, W., Yifan, Z. \& Jiaxi, L. (1988). Jiegou Huaxue (J. Struct. Chem.), 7, 47-52.
Yamamoto, Y. \& Yamazaki, H. (1985). Bull. Chem. Soc. Jpn, 58, 18431844.

Zeiher, C., Mohyla, J., Lorenz, I.-P. \& Hiller, W. (1985). J. Organomet. Chem. 286, 159-170.

Zhanfeng, Y., Guoxiong, W., Ling, Y., Fengshan, W. \& Yuguo, F. (1990). Nanjing Univ. Dax. Xuebao Zir. Kex. 26, 256.

Zhigui, Z., Chunxiao, G., Yuguo, F. \& Fengshan, W. (1986). J. Inorg. Chem. (Wuji Huaxue Xuebao), 2, 26-31.
Zviedre, I., Fundamensky, V. S. \& Schwartz, E. (1992). Latv. Khim. Zh. pp. 527-532.
Zyss, J., Ledoux, I., Bertault, M. \& Toupet, E. (1991). Chem. Phys. 150, 125-135.

[^0]: * A lists of revised coodinates has been deposited with the IUCr (Reference: AN0533). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

